Assessment of Serum 1,3-β-D-glucan as a Measure of Disease Burden in Invasive Pulmonary Aspergillosis

Nathan P. Wiederhold
University of Texas at Health Science Center at San Antonio
University of Texas at Austin College of Pharmacy
Study Objectives

• Two surrogate markers accepted by EORTC/MSG
 – Galactomannan & 1,3-β-D-glucan
 – Little clinical experience with 1,3-β-D-glucan in high risk patients for diagnosis of IPA

➢ Measure the serum kinetics of 1,3-β-D-glucan in murine and guinea pig models of IPA

➢ Examine assay as a surrogate marker of disease burden
 – Presence of antifungal therapy
Murine Model of Invasive Pulmonary Aspergillosis

5-week ICR mice

Pulmonary inoculation *A. fumigatus*

Antifungals initiated

Cortisone acetate
Cyclophosphamide

End of Survival arm

Survival Arm

D-2 D0 D+1 D+2 D+3 D+4 D+5 D+6 D+7 D+8

Blood collected and serum separated on days +1, +3, +5, +7 for β-glucan assay (serum kinetics)

Serum 1,3-β-D-Glucan Assay

- Endotoxin (LPS) → Activated Factor C
- Factor C (Eliminated from Fungitell kits) → Activated Factor C
- Factor B → Activated Factor B
- β-(1,3)-D-glucan → Activated Factor G

Proclotting Enzyme → Activated Clotting Enzyme

Chromogen (absorbs at 405 nm)

Associates of Cape Cod. Fungitell™ Product Insert.
Methods - Serum β-1,3-Glucan Assay

• Serum separated and transferred to 96 well cell culture tray
 – 5 mcL per well
 – Each sample in duplicate

• Alkaline serum treatment
 – Incubation 37°C

• Fungitell™ reagent
 – Mean rate ΔO.D. (405 nm) over 40 minute period

• Unknowns compared to standard curve
 – Range 0 - 500 pg/mL

Associates of Cape Cod. Fungitell™ Product Insert.
Methods - Pulmonary Fungal Burden

- Fungal burden
 - Lungs harvested at Day +5, homogenized and bead beaten
 - DNA extracted using proteinase K incubation and Qiagen DNeasy columns

- DNA analyzed by real-time qPCR assay using probes and primers specific for DNA encoding *Aspergillus FKS* gene

- Unknowns compared to standard curve generated from *Aspergillus* genomic DNA
 - Conidial equivalents/g

- Samples were run in duplicate

![Standard Curve Plot](r^2 = 0.9955)
Serum 1,3-β-D-Glucan Kinetics

![Graph showing serum β-glucan levels over time](image)

<table>
<thead>
<tr>
<th>Serum β-Glucan</th>
<th>Uninfected</th>
<th>Day +1</th>
<th>Day +3</th>
<th>Day +5</th>
<th>Day +7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>37.6</td>
<td>29.2</td>
<td>218</td>
<td>635</td>
<td>442</td>
</tr>
<tr>
<td>Range</td>
<td>56.0 - 68.3</td>
<td>12.3 - 39.2</td>
<td>49.2 - 609</td>
<td>142 - 1375</td>
<td>225 - 510</td>
</tr>
</tbody>
</table>

*P < 0.01 vs. Day +1, 1 hr SAC and Uninfected Controls
Results - AF293

<table>
<thead>
<tr>
<th>AF293</th>
<th>Control</th>
<th>AMBd 3 mg/kg IP</th>
<th>POS 40 mg/kg BID</th>
<th>LAMB 10 mg/kg IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Survival</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>(Median Survival)</td>
<td>(9 days)</td>
<td>(10 days)</td>
<td>(>12 days)</td>
<td>(10.5 days)</td>
</tr>
<tr>
<td>Median β-glucan</td>
<td>758</td>
<td>250 ‡</td>
<td>28.5*</td>
<td>127∫</td>
</tr>
<tr>
<td>(Range)</td>
<td>(377 - 1426)</td>
<td>(63.8 - 525)</td>
<td>(0 - 111)</td>
<td>(28.5 - 259)</td>
</tr>
<tr>
<td>Median Log CE/gm</td>
<td>10</td>
<td>9.6</td>
<td>3.6*</td>
<td>8.9∫</td>
</tr>
<tr>
<td>(Range)</td>
<td>(9.1 - 11)</td>
<td>(8.8 - 11)</td>
<td>(0 - 8.7)</td>
<td>(8.3 - 9.8)</td>
</tr>
</tbody>
</table>

*P < 0.01 vs. Control, AMBd, & LAMB; ‡P < 0.01 vs. Control; ∫P < 0.01 vs. Control
Results - CEA10

<table>
<thead>
<tr>
<th>CEA10</th>
<th>Control</th>
<th>AMBd 3 mg/kg IP</th>
<th>POS 40 mg/kg BID</th>
<th>LAMB 10 mg/kg IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Survival</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>(Median Survival)</td>
<td>(7.5 days)</td>
<td>(11.5 days)</td>
<td>(>12 days)</td>
<td>(10.5 days)</td>
</tr>
<tr>
<td>Median β-glucan</td>
<td>707</td>
<td>315‡</td>
<td>0*</td>
<td>167∫</td>
</tr>
<tr>
<td>(Range)</td>
<td>(328 - 959)</td>
<td>(115 - 1217)</td>
<td>(0 - 173)</td>
<td>(463 - 381)</td>
</tr>
<tr>
<td>Median Log CE/gm</td>
<td>9.6</td>
<td>9.0</td>
<td>7.3*</td>
<td>9.5</td>
</tr>
<tr>
<td>(Range)</td>
<td>(0 - 11)</td>
<td>(7.6 - 10)</td>
<td>(0 - 8.7)</td>
<td>(7.7 - 10)</td>
</tr>
</tbody>
</table>

* P < 0.01 vs. Control, AMBd, & LAMB; ‡ P = 0.01 vs. Control; ∫ P < 0.01 vs. Control
Guinea Pig Model of Invasive Pulmonary Aspergillosis

Antifungals initiated:
- Cortisone acetate
- Cyclophosphamide

Tissue Burden:
Animals euthanized; lungs harvested

Blood collected and serum separated on days +1, +3, +5, +7 for β-glucan assay (serum kinetics)
1,3-β-D-Glucan Kinetics in Guinea Pigs

Serum β-Glucan

<table>
<thead>
<tr>
<th></th>
<th>Uninfected</th>
<th>Day +1</th>
<th>Day +3</th>
<th>Day +5</th>
<th>Day +7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0</td>
<td>5.0</td>
<td>0.9</td>
<td>47.6</td>
<td>1337</td>
</tr>
<tr>
<td>Range</td>
<td>0 - 43.9</td>
<td>0 - 40.6</td>
<td>0 - 60.5</td>
<td>0 - 971</td>
<td>294 - 1682</td>
</tr>
</tbody>
</table>

P < 0.01 vs. Day +1, and Uninfected Controls
Results - Guinea Pigs

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>POS 20 mg/kg BID</th>
<th>VOR 20 mg/kg BID</th>
<th>AMB 1.3 mg/kg IP</th>
<th>LAMB 10 mg/kg IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Survival</td>
<td>0 (8)</td>
<td>75 (>11)</td>
<td>37.5 (8)</td>
<td>0 (8)</td>
<td>0 (8.5)</td>
</tr>
<tr>
<td>Median β-glucan</td>
<td>326 (294 - 1337)</td>
<td>264 (158 - 371)</td>
<td>51.9 (0 - 941)</td>
<td>533 (520 - 1269)</td>
<td>25.0 (0 - 456)</td>
</tr>
<tr>
<td>Median Log CE/gm</td>
<td>7.7 (6.6 - 9.5)</td>
<td>4.2 (3.8 - 5.2)</td>
<td>4.8 (3.7 - 6.6)</td>
<td>7.0 (5.2 - 7.5)</td>
<td>7.0 (4.5 - 8.1)</td>
</tr>
</tbody>
</table>
Results - Serial Sampling

- **Posaconazole**
 -
 -
 -
 - 60 pg/mL Threshold
 - Day 3, Day 5, Day 7, Day 11

- **Voriconazole**
 -
 -
 -
 - 60 pg/mL Threshold
 - Day 3, Day 5, Day 7, Day 11

- **Amphotericin B**
 -
 -
 -
 - 60 pg/mL Threshold
 - Day 3, Day 5, Day 7

- **Liposomal AMB**
 -
 -
 -
 - 60 pg/mL Threshold
 - Day 3, Day 5, Day 7
Limitations

- False positives / interfering substances
 - Exposure to glucan-containing products (gauze)
 - Lipemia, hemolysis

- 1,3-β-D-glucan assay not evaluated with echinocandin therapy

- Discordance between serum 1,3-β-D-glucan and residual fungal burden

- No comparison with other surrogate markers
Conclusions

• Serum 1,3-β-D-glucan detectable earlier in course of infection in murine model
 – > 60 pg/mL by day +3
 – Later detection in guinea pig model (day 7)

• Early decreases in serum 1,3-β-D-glucan were predictive of survival in murine model
 – Median values of < 60 pg/mL on day +5 associated with 100% survival in posaconazole group
 – Reductions associated with improved survival in amphotericin B groups

• Median serum 1,3-β-D-glucan concentrations less predictive of outcome in guinea pigs
 – Reductions to < 60 pg/mL in serial samples in same animal from day 7 to day 11 observed in those treated with posaconazole
 – Increases in serial samples observed in animals who failed therapy
Conclusions

- Results suggest potential use of 1,3-β-D-glucan assay for screening and early diagnosis of IPA
 - Concern for discordance between residual tissue burden and serum 1,3-β-D-glucan concentrations

- Potential use of serial assessment of 1,3-β-D-glucan as a measure of treatment efficacy

- Additional pre-clinical studies warranted
 - Comparison with other surrogate markers
 - Clarify time required for assay to become positive