RFA NIH-NIAID-DMID-03-09:
New Animal Models for:
Part B Invasive Aspergillosis
(August 12, 2002)

NIH-NIAID-N01-AI-30041
Invasive Aspergillosis
Animal Models (IAAM)

I think….therefore IAAM. DMD Sept ‘03
Need for Reference Standard(s)

- Historical perspective: Critical needs in antifungal susceptibility
 - Method reproducible
 - Provides reference standard for comparison of other methods
 - Validated for clinical correlation
- Highest priority for *Aspergillus* and new diagnostics
 - Standardized models aimed at identifying new targets for diagnosis & monitoring of disease progression
SPECIFIC AIMS

• Establish and standardize animal models of IA
 ▪ Mouse Model
 ▪ Guinea pig Model
 ▪ Rabbit Model

• Develop molecular tools to provide standardized procedures for genetic manipulation of *Aspergillus* strains.
 ▪ Molecular Toolbox
 ▪ Pathogenesis Toolbox

• Determine gene expression of both whole cell and individual target genes of *Aspergillus* in experimental infection

• Post-genomic data to develop novel diagnostic and immunologic approaches in the management of IA

• Dissemination of knowledge and skills to qualified scientists and laboratories
 ▪ Training
 ▪ Website
 ▪ Annual workshops
Animal Models: Key Features

- **Mice & larger animals: rabbit/guinea pigs**
 - Pulmonary (aerosol) challenge

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia/non-neutropenic; other immunosuppression</td>
<td>Continuous blood sampling for surrogate markers</td>
</tr>
<tr>
<td>Differentiate: exposure/colonization/infection</td>
<td>Quantify tissue burden (2 methods)</td>
</tr>
<tr>
<td>Standardized</td>
<td>Local/disseminated infection</td>
</tr>
<tr>
<td>Telemetry/IR fever curves</td>
<td>Genomic approach to molecular diagnosis</td>
</tr>
<tr>
<td></td>
<td>Survival duration allowing for disease progression (4-7 d)</td>
</tr>
<tr>
<td></td>
<td>Assess growth dynamics of fungi</td>
</tr>
<tr>
<td></td>
<td>A. fumigatus (AF293); suitable for others</td>
</tr>
<tr>
<td></td>
<td>Gene profiling</td>
</tr>
</tbody>
</table>
Animal Model Design

• Recapitulates human disease
• Cost
• Reproducibility
• Ease of use
• Amenable to studies including:
 ▪ Evaluation of novel diagnostics
 ▪ Evaluation of host response
 ▪ Evaluation of organism virulence factors on diagnosis through molecular manipulations
 ▪ In vivo expression analysis
 ▪ Evaluation of effect of therapy on diagnosis
Madison Aerosol Challenge/Inhalational Chamber

The Reference Standard

Precision delivery to:
- 90 mice
- 18 guinea pigs
- 4 rabbits
Developmental Status Report

• Completion of Phase I—continuation of phase 2 (end of year 4)
 ▪ Deliverables: Standard operating procedures
 - Molecular techniques
 - Animal models
 - www.sacmm.org/iaam.html
 ▪ How to identify “key” questions/new diagnostics
 - Interactions with Steering Committee, Scientific Community & Commercial Partners
 ▪ Procedures for receiving requests and establishing priorities
 ▪ Development of new diagnostics
 - New targets
 - New platforms
 (Provide tissues/samples; testing)
IAAM: Standard Operating Procedures

Invasive Aspergillosis Animal Models

<table>
<thead>
<tr>
<th>Title</th>
<th>File for download</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Operating Procedure for Preparation of Aspergillus fumigatus Test Strains for Inhalational Pulmonary Aspergillosis Animal Studies</td>
<td>PDF File</td>
</tr>
<tr>
<td>Standard Operating Procedure for Murine Inhalational Pulmonary Aspergillosis</td>
<td>PDF File</td>
</tr>
<tr>
<td>Standard Operating Procedure for Guinea Pig Inhalational Pulmonary Aspergillosis</td>
<td>PDF File</td>
</tr>
<tr>
<td>Standard Operating Procedure for Animal Tissue Homogenization</td>
<td>PDF File</td>
</tr>
<tr>
<td>Standard Operating Procedure for Processing Animal Tissue Samples for PCR, Gel Electrophoresis, and Storage</td>
<td>PDF File</td>
</tr>
<tr>
<td>Standard Operating Procedure for Aspergillus sp. DNA Extraction for Quantitative Real-time Polymerase Chain Reaction</td>
<td>PDF File</td>
</tr>
<tr>
<td>Standard Operating Procedure for the Determination of Tissue Fungal Burden Utilizing Quantitative Real-time Polymerase Reaction (qPCR)</td>
<td>PDF File</td>
</tr>
</tbody>
</table>

Links provided from Health Science Center pages to other websites do not constitute or imply an endorsement of these sites, their content, or products and services associated with these sites.

Best viewed at 1024x768 resolution.

www.sacmm.org/iaam.html
Key Questions

• Qualified investigator
 - Researcher with interest in *Aspergillus*
 - Trained to safely perform requested research
 - Qualifications: Principal investigators; Trainees (Post-doctoral fellows, students); Industry researchers

• Key Questions
 - Gene/gene product as diagnostic target
 - Evaluation of surrogate marker(s)
 - Effects of therapy on disease progression/gene expression
 - Role of virulence determinants in diagnosis
 - Others
Key Questions

• Prioritization of key questions
 ▪ High likelihood of commercialized diagnostic product
 ▪ Data to support development of diagnostic product
 ▪ Pilot studies to test theoretical diagnostic target
 - NIH funded research
 - Preliminary data to support NIH application with favorable priority score on review
 - Pilot studies to evaluate investigator initiated concept
 - Industry sponsored research
Key Questions

<table>
<thead>
<tr>
<th>Researchers</th>
<th>Project Details</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Steinbach</td>
<td>Calcineurin pathway in IA</td>
<td>Duke</td>
</tr>
<tr>
<td>R. Cramer</td>
<td>Role of gliP in gliotoxin synthesis</td>
<td>Duke</td>
</tr>
<tr>
<td>B. Miller</td>
<td>Aspergillus virulence determinants</td>
<td>U Idaho</td>
</tr>
<tr>
<td>N. Wiederhold</td>
<td>Genome-wide expression to echinocandins for Af</td>
<td>UTHSCSA</td>
</tr>
<tr>
<td>C. Clancy</td>
<td>In vivo gene expression of Af</td>
<td>U Florida</td>
</tr>
<tr>
<td>S. Harris</td>
<td>Polarized Hyphal Growth in Af</td>
<td>U Nebraska</td>
</tr>
<tr>
<td>R. Akins/J. Sobel</td>
<td>Microfluidic device for rapid pathogenic fungal diagnosis</td>
<td>U Michigan</td>
</tr>
<tr>
<td>A. Zaas</td>
<td>Genetic determinants of Af susceptibility</td>
<td>Duke</td>
</tr>
<tr>
<td>R. Calderone</td>
<td>Germination in Af</td>
<td>Georgetown</td>
</tr>
<tr>
<td>M. Momany</td>
<td>Rho GTPases in polar growth of Af</td>
<td>U Georgia</td>
</tr>
<tr>
<td>B. Segal</td>
<td>Development of Aspergillus vaccine</td>
<td>SUNY/Buffalo</td>
</tr>
<tr>
<td>D. Perlin</td>
<td>New Diagnostics for Af</td>
<td>New Jersey</td>
</tr>
<tr>
<td>C. Selitrennikoff</td>
<td>Prophylactic and therapeutic Aspergillus vaccines</td>
<td>MycoLogics, Inc, Aurora, CO</td>
</tr>
<tr>
<td>C. Douglas</td>
<td>QPCR for diagnostics of A. fumigatus</td>
<td>Merck and Co., Inc, Rahway, NJ</td>
</tr>
<tr>
<td>J. Loeffler</td>
<td>QPCR for diagnostics of A. fumigatus</td>
<td>University of Wuerzburg, Germany</td>
</tr>
<tr>
<td>G. Ramage</td>
<td>Real-Time PCR assay to detect A. fumigatus</td>
<td>Glasgow Caledonian University, Glasgow, Scotland</td>
</tr>
</tbody>
</table>

Invasive Aspergillosis Animal Models (IAAM)
<table>
<thead>
<tr>
<th>Name</th>
<th>Project</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Cray</td>
<td>Murine model of Pulmonary invasive Aspergillosis</td>
<td>University of Miami Miller School of Medicine, Miami FL</td>
</tr>
<tr>
<td>D. Sheppard</td>
<td>GM diagnostics in A. fumigatus</td>
<td>McGill University, Montreal Canada</td>
</tr>
<tr>
<td>B. Wickes</td>
<td>PCR diagnostics in A. fumigatus</td>
<td>UTHSCSA</td>
</tr>
<tr>
<td>S. Filler / D. Sheppard</td>
<td>Host response to invasive aspergillosis</td>
<td>UCLA - Harbor / McGill University</td>
</tr>
<tr>
<td>S. Baker</td>
<td>Proteomics approach to A. fumigatus detection</td>
<td>Pacific Northwest National laboratory, Richland, WA</td>
</tr>
<tr>
<td>R. Cramer</td>
<td>Metabolomics approach to A. fumigatus detection</td>
<td>Duke</td>
</tr>
<tr>
<td>N. Wiederhold</td>
<td>Chitin assay development for pulmonary aspergillosis</td>
<td>UTHSCSA</td>
</tr>
<tr>
<td>N. Wiederhold</td>
<td>effect of paradoxical effect on diagnosis of IPA during echinocandin therapy</td>
<td>UTHSCSA</td>
</tr>
<tr>
<td>A. Vallor</td>
<td>utility of serum vs whole blood for assessment of fungal burden in IPA</td>
<td>UTHSCSA</td>
</tr>
<tr>
<td>S. Filler / D. Sheppard</td>
<td>Effect of different aspergillus isolates on experimental murine IPA</td>
<td>UCLA - Harbor / McGill University</td>
</tr>
<tr>
<td>M. Del Poeta</td>
<td>Detection of anti-glucosylceramide antibody in an Invasive Aspergillosis</td>
<td>Medical Univ. Of S. Carolina, Charleston, SC</td>
</tr>
<tr>
<td>Russ Lewis</td>
<td>Animal models for diagnosis and treatment (Use of SOPs)</td>
<td>MD Anderson, Houston TX</td>
</tr>
<tr>
<td>Terry Sweeney</td>
<td>ABIP in an inhalational model of aspergillosis (Use of SOPs)</td>
<td>Nektar Therapeutics, San Carlos, CA</td>
</tr>
</tbody>
</table>
IAAM - INVASIVE ASPERGILLOSIDIC ANIMAL MODELS:
Fourth Annual Meeting
The University of Texas Health Science Center at San Antonio
Academics and Administration Building Room 114
7703 Floyd Curl Drive
San Antonio, TX 78284-3900
Telephone (210) 567-4527
Thursday, October 18, 2007
8:00 AM - 1:00 PM

Welcome & Introductions
• Dennis Dixon / Rony Duncan / Tom Patterson
 Welcome / Meeting Expectations 8:00 - 8:15 AM
• Tom Patterson
 Presentation: Contract Review & Key Questions 8:15 - 8:30 AM

Session 1 MODEL UPDATES
• Scott Filler / Laura Najjar
 Presentation: Murine Models 8:30 - 8:50 AM
• Rick Kirkpatrick / Peter Warn
 Presentation: Guinea Pig and Rat Models 8:50 - 9:00 AM

Session 2 SURROGATE MARKERS AND GENE EXPRESSION
• Ana Vallor / Nathan Wiederhold
 Presentation: PCR / Beta-D-glucan 9:00 - 9:20 AM
• Don Sheppard
 Presentation: In vivo Galactomannan Release
 Gene Expression 9:20 - 9:40 AM

Session 3 MOLECULAR TOOLBOX
• Brian Wickes / David Denning
 Presentation: Aspergillus Strain Identification 9:40 - 10:00 AM
• Panel Discussion and audience interaction 10:00 - 10:25 AM

Break 10:25 - 10:50 AM

Session 4 KEYNOTE LECTURE: CLINICAL NEEDS
• John Wingard University of Florida Shands Cancer Center

Session 5 NEW DIAGNOSTIC PLATFORMS AND TARGETS
• Margo Moore, Simon Fraser University
 Presentation: Siderophores for IA Diagnosis 11:15 - 11:30 AM
• Annette Fothergill / Wieslaw Farmaga, University of Massachusetts
 Presentation: Proteomics in IA Diagnostics 11:30 - 11:45 AM
• Steven B. Kleboecker, Pacor
 Presentation: Real time PCR of A. fumigatus 11:45 - 12:00 PM
• Marta Feldmesser, Albert Einstein College of Medicine
 Presentation: Diagnostic Tests for A. fumigatus 12:00 - 12:15 PM
• Tom Walsh, National Institutes of Health/National Cancer Institute
 Presentation: Host/Pathogen Proteomics of Experimental IPA 12:15 - 12:30 PM
• Panel Discussion and audience interaction 12:30 - 12:35 PM

Conclusions: Future Directions
• Tom Patterson 12:35 - 1:00 PM

Departures – Lunch 1:00 PM
Future Directions

• Deliverables/Model refinement
 ▪ SOPs online
 ▪ Alternative Af strains
 ▪ Role of host responses
 ▪ Distinction of colonization vs disease
 ▪ Impact of sample types, collection, storage

• New target identification
 ▪ Gene product(s) in disease
 ▪ Host gene responses
 ▪ Novel approaches

• Diagnostic development
 ▪ Industry partners
 ▪ Pre-clinical support for diagnostics
 ▪ Community awareness/interaction
3rd ADVANCES AGAINST ASPERGILLOSIS
January 16-19, 2008
Miami Beach Resort & Spa
Miami, Florida
USA
www.AAA2008.org

Sponsored by:
University of California, San Diego–School of Medicine